Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos

Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos



Abrir | Descargar


Sección
Artículos de investigación

Cómo citar
Ríos, L. A. (2015). Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos. Revista Agunkuyâa, 2(1), 42-62. https://areandinaojs.metarevistas.org/index.php/Cc/article/view/302

DOI
Luis Alberto Ríos

    Se realizó una revisión general sobre la disponibilidad de materias primas en Colombia y de las diversas etapas de transformación que se recomiendan para la producción de etanol lignocelulósico en la actualidad. A lo largo de la exploración teórica realizada, se hizo una comparación con reportes existentes sobre la Eichhornia crassipes, con la finalidad de exponer diferencias y similitudes que permitan exaltar la importancia de ampliar las opciones de materias primas a la hora de considerar producir bioetanol. En lo referente a pretratamientos y métodos de hidrólisis de biomasa lignocelulósica, se hizo énfasis en los principios que rigen estos procedimientos. En este trabajo igualmente se presentan resultados preliminares sobre el aprovechamiento del jacinto de agua proveniente de embalses de las Empresas Públicas de Medellín (EPM) para la producción de bioetanol. Este esfuerzo responde a la necesidad de agrupar información valiosa, que ofrezca una perspectiva sobre las tecnologías que existen para producir este tipo de biocombustible y de cómo se han aplicado a diferentes fuentes, en particular el jacinto de agua.

    Abstract

    A general review was conducted about the availability of raw materials in Colombia and processing steps recommended in lignocellulosic ethanol production currently. With theoretical exploration was made a comparison with existing reports about the Eichhornia crassipes, in order to explain differences and similarities that allow exalt the importance of expanding commodity options when considering producing bioethanol. Regarding pretreatment and hydrolysis methods lignocellulosic biomass, the emphasis was on the principles governing these procedures. This paper also presents results of the utilization of Water Hyacinth reservoirs of Empresas Públicas de Medellín (EPM) for the production of bioethanol. This effort responds to the need to bring together valuable information that provides an overview of the technologies available to produce this type of biofuel and how they have been applied to various sources, in particular the Water Hyacinth. 

    Keywords: Lignocellulosic ethanol, Eichhornia crassipes, biomass pretreatment.


    Visitas del artículo 621 | Visitas PDF 1273


    1. Abraham, M. y G. M. Kurup (1996). Bioconversion
    2. of tapioca (Manihotesculenta) waste
    3. and water hyacinth (Eichhornia crassipes).
    4. Influence of various physico-chemical
    5. factors. Journal of Fermentation and
    6. Bioengineering, 82 (3),: 259-263.
    7. Aswathy, U. S., Sukumaran, R. K. et al.
    8. Bio-ethanol from water hyacinth biomass:
    9. An evaluation of enzymatic saccharification
    10. strategy. Bioresource Technology, 101
    11. (3), 925-930.
    12. Aswathy, U. S., Sukumaran, R. K., Devi, G. L.,
    13. Rajasree, K. P., Singhania, R. R., y Pandey,
    14. A. (2010). Bio-ethanol from water hyacinth
    15. biomass: an evaluation of enzymatic saccharification
    16. strategy. Bioresource technology,
    17. (3), 925-930.
    18. Brodeur, G., E. Yau, et al. (2011). “Chemical
    19. and Physicochemical Pretreatment of
    20. Lignocellulosic Biomass: A Review.
    21. “ Enzyme Research. 2011.
    22. Cheng, K. -K., B. -Y. Cai, et al. (2008). “Sugarcane
    23. bagasse hemicellulose hydrolysate
    24. for ethanol production by acid recovery
    25. process.” Biochemical Engineering Journal,
    26. (1),: 105-109.
    27. Dragone, G., S. I., Mussatto, et al. “Optimal
    28. fermentation conditions for maximizing the
    29. ethanol production by Kluyveromycesfragilis
    30. from cheese whey powder”. Biomass and
    31. Bioenergy, 35 (5),: 1977-1982.
    32. Ganguly, A., Halder, S., Laha, A., Saha, N.,
    33. Chatterjee, P. K. y Dey, A. (2013). Effect of
    34. Alkali Preteatment on Water Hyacinth Biomass
    35. for Production of Ethanol. Advanced
    36. Chemical Engineering Research, 2 (2).
    37. Ganguly, A., P. K., Chatterjee, et al. “Studies
    38. on ethanol production from water hyacinthae.”
    39. A review. “Renewable and Sustainable
    40. Energy Reviews (0)”.
    41. Gario, F. M., Fonseca, C. et al. Hemicelluloses
    42. for fuel ethanol: A review. Bioresource Technology,
    43. (13), 4775-4800.
    44. Gnansounou, E. y A. Dauriat. “Techno-economic
    45. analysis of lignocellulosic ethanol:
    46. A review. “ Bioresource Technology, 101(13):
    47. -4991.
    48. Golias, H., Dumsday, G. J., et al. (2002).
    49. “Evaluation of a recombinant Klebsiellaoxytoca
    50. strain for ethanol production from
    51. cellulose by simultaneous saccharification
    52. and fermentation: comparison with native
    53. cellobiose-utilising yeast strains and performance
    54. in co-culture with thermotolerant
    55. yeast and Zymomonasmobilis.” Journal of
    56. Biotechnology, 96(2): 155-168.
    57. González-García, S., M. T. Moreira, M. T.,
    58. et al. “Comparative environmental performance
    59. of lignocellulosic ethanol from
    60. different feedstocks. Renewable and Sustainable
    61. Energy Reviews, 14 (7): 2077-2085.
    62. Hamelinck, C. N., G. v. Hooijdonk, G. V. et
    63. al. (2005). “Ethanol from lignocellulosic
    64. biomass: techno-economic performance in
    65. short-, middle-and long-term”. Biomass and
    66. Bioenergy, 28 (4): 384-410.
    67. J. N., N. (2001). “Ethanol production from
    68. wheat straw hemicellulose hydrolysate
    69. by Pichiastipitis.” Journal of Biotechnology,
    70. (1),: 17-27.
    71. J. N., N. (2002). “Bioconversion of water-hyacinth
    72. (Eichhornia crassipes) hemicellulose
    73. acid hydrolysate to motor fuel ethanol by
    74. xylose a “fermenting yeast.” Journal of Biotechnology,
    75. (2),: 107-116.
    76. Jeewon, L. (1997). “Biological conversion of
    77. lignocellulosic biomass to ethanol.” Journal
    78. of Biotechnology, 56 (1),: 1-24.
    79. Kumar, A., L. K. Singh, L. K., et al. (2009).
    80. “Bioconversion of lignocellulosic fraction
    81. of water-hyacinth (Eichhornia crassipes)
    82. hemicellulose acid hydrolysate to ethanol
    83. by Pichiastipitis. Bioresource Technology,
    84. (13):, 3293-3297.
    85. Laser, M., D. Schulman, D., et al. (2002).
    86. “A comparison of liquid hot water and
    87. steam pretreatments of sugar cane bagasse
    88. Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos
    89. Vol. 2, N. 1 enero - junio DE 2012 61
    90. for bioconversion to ethanol.” Bioresource
    91. Technology, 81(1),: 33-44.
    92. Lee, S. --M. y J.-H. Lee, J. H. “Ethanol fermentation
    93. for main sugar components of
    94. brown-algae using various yeasts.” Journal
    95. of Industrial and Engineering Chemistry (0).
    96. Lee, S. -M. a y nd J.-H. Lee, J. H. “The isolation
    97. and characterization of simultaneous saccharification
    98. and fermentation microorganisms
    99. for Laminaria japonica utilization.”
    100. Bioresource Technology, 102 (10),: 5962-5967.
    101. Lynd, L. R., Weimer, P. J. et al. (2002).
    102. “Microbial Cellulose Utilization: Fundamentals
    103. and Biotechnology.” Microbiology
    104. and Molecular Biology Reviews, 66 (3), (3):
    105. -577.
    106. Mabee, W. E., P. N. McFarlane, P. J., et al.
    107. “Biomass availability for lignocellulosic
    108. ethanol production.” Biomass and Bioenergy,
    109. (0).
    110. Margeot, A., B. R. Hahn-Hagerdal, B. R. et al.
    111. (2009). “New improvements for lignocellulosic
    112. ethanol.” Current Opinion in Biotechnology,
    113. (3),: 372-380.
    114. Mishima, D., M. Tateda, M., et al. (2006).
    115. “Comparative study on chemical pretreatments
    116. to accelerate enzymatic hydrolysis of
    117. aquatic macrophyte biomass used in water
    118. purification processes.” Bioresource Technology,
    119. (16),: 2166-2172.
    120. Öhgren, K., R. Bura , et al. (2007). A comparison
    121. between simultaneous saccharification
    122. and fermentation and separate hydrolysis
    123. and fermentation using steam-pretreated
    124. corn stover. Process Biochemistry, 42 (5),
    125. -839.
    126. Olsson, L., H. R. Soerensen, H. R. et al.
    127. (2006). Separate and Simultaneous
    128. Enzymatic Hydrolysis and Fermentation of
    129. Wheat Hemicellulose With Recombinant
    130. Xylose Utilizing Saccharomyces cerevisiae.
    131. Twenty-Seventh Symposium on Biotechnology
    132. for Fuels and Chemicals, Humana Press,:
    133. -129.
    134. Rahman, M. M., Chowdhury, A. A. et al.
    135. (1986). “Microbial production of biogas form
    136. organic wastes.” Journal of Fermentation
    137. Technology, 64(1),: 45-49.
    138. Rogalinski, T., T. Ingram, T., et al. (2008).
    139. “Hydrolysis of lignocellulosic biomass in
    140. water under elevated temperatures and
    141. pressures.” The Journal of Supercritical
    142. Fluids, 47(1),: 54-63.
    143. Shields, S. y R. Boopathy, R.
    144. “Ethanol production from lignocellulosic
    145. biomass of energy cane.” International
    146. Biodeterioration& Biodegradation,
    147. (1),: 142-146.
    148. Singh, A., D. Pant, D. et al. “Key issues in life
    149. cycle assessment of ethanol production
    150. from lignocellulosic biomass: Challenges
    151. and perspectives.” Bioresource Technology,
    152. (13),: 5003-5012.
    153. Spatari, S., Bagley, D. M., et al. “Life cycle
    154. evaluation of emerging lignocellulosic ethanol
    155. conversion technologies.” Bioresource
    156. Technology, 101(2),: 654-667.
    157. Srilekha Yadav, K., S. Naseeruddin S., et al.
    158. “Bioethanol fermentation of concentrated
    159. rice straw hydrolysate using co-culture
    160. of Saccharomyces cerevisiae and Pichiastipitis.”
    161. Bioresource Technology, 102 (11),:
    162. -6478.
    163. Sukumaran, R. K., Surender, V. J., et al.
    164. “Lignocellulosic ethanol in India: Prospects,
    165. challenges and feedstock availability.” Bioresource
    166. Technology, 101(13),: 4826-4833.
    167. Sun, Y. y J. Cheng, J. (2002). “Hydrolysis of
    168. lignocellulosic materials for ethanol production:
    169. a review.” Bioresource Technology,
    170. (1),: 1-11.
    171. Swain, M. R., S. Kar, S. et al. (2007). “Ethanol
    172. fermentation of mahula (Madhucalatifolia
    173. L.) flowers using free and immobilized
    174. yeast Saccharomyces cerevisiae.” Microbiological
    175. Research, 162 (2),: 93-98.
    176. Takeshige, K. y K. Ouchi, K. (1995). “Reconstruction
    177. of ethanol fermentation in perKaren
    178. Ospino Villalba | Luis Alberto Ríos
    179. enero - junio DE 2012 Vol. 2, N. 1
    180. meabilized cells of the yeast Saccharomyces
    181. cerevisiae.” Journal of Fermentation and
    182. Bioengineering, 79(1),: 11-16.
    183. Talebnia, F., D. Karakashev, D. et al.
    184. “Production of bioethanol from wheat
    185. straw: An overview on pretreatment,
    186. hydrolysis and fermentation.” Bioresource
    187. Technology, 101 (13),: 4744-4753.
    188. Unrean, P. y F. Srienc, F. “Continuous production
    189. of ethanol from hexoses and pentoses
    190. using immobilized mixed cultures of Escherichia
    191. coli strains.” Journal of Biotechnology,
    192. (2),: 215-223.
    193. Van Walsum, G., S. Allen, S. et al. (1996).
    194. “Conversion of lignocellulosics pretreated
    195. with liquid hot water to ethanol.” Applied
    196. Biochemistry and Biotechnology, 57-58(1),:
    197. -170.
    198. Xu, L. y U. Tschirner, U. “Improved ethanol
    199. production from various carbohydrates
    200. through anaerobic thermophilic
    201. co-culture.” Bioresource Technology,
    202. (21),: 10065-10071.
    203. Yang, C., Z. Shen, Z. et al. (2008). “Effect and
    204. aftereffect of irradiation γ radiation pretreatment
    205. on enzymatic hydrolysis of wheat
    206. straw.” Bioresource Technology, 99 (14),:
    207. -6245.
    208. Yoon, H. (1998). “Pretreatment of lignocellulosic
    209. biomass by autohydrolysis and aqueous
    210. ammonia percolation.” Korean Journal of
    211. Chemical Engineering, 15(6),: 631-636.
    212. Zhao, J. y L. Xia, L. (2009). Simultaneous saccharification
    213. and fermentation of alkalinepretreated
    214. corn stover to ethanol using a
    215. recombinant yeast strain. Fuel Processing
    216. Technology, 90 (10), 1193-1197.
    217. Zhao, Y., Y. Wang, Y. et al. (2008). Enhanced
    218. enzymatic hydrolysis of spruce by alkaline
    219. pretreatment at low temperature. Biotechnology
    220. and bioengineering, 99 (6), 1320-1328.
    221. Zheng, P., L. Fang, L. et al. “Succinic acid production
    222. from corn stover by simultaneous
    223. saccharification and fermentation using
    224. Actinobacillussuccinogenes.” Bioresource
    225. Technology, 101 (20):, 7889-7894.
    226. Zhiguang Zhu. (2009). Investigating biomass
    227. saccharification for the production of cellulosic
    228. ethanol. Disponible en: www.scholar.
    229. lib.vt.edu/theses/available/etd-05042009-
    230. /unrestricted/zhiguangzhumsthesis-
    231. pdf
    Sistema OJS 3.4.0.9 - Metabiblioteca |