Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos
Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos
Mostrar biografía de los autores
Se realizó una revisión general sobre la disponibilidad de materias primas en Colombia y de las diversas etapas de transformación que se recomiendan para la producción de etanol lignocelulósico en la actualidad. A lo largo de la exploración teórica realizada, se hizo una comparación con reportes existentes sobre la Eichhornia crassipes, con la finalidad de exponer diferencias y similitudes que permitan exaltar la importancia de ampliar las opciones de materias primas a la hora de considerar producir bioetanol. En lo referente a pretratamientos y métodos de hidrólisis de biomasa lignocelulósica, se hizo énfasis en los principios que rigen estos procedimientos. En este trabajo igualmente se presentan resultados preliminares sobre el aprovechamiento del jacinto de agua proveniente de embalses de las Empresas Públicas de Medellín (EPM) para la producción de bioetanol. Este esfuerzo responde a la necesidad de agrupar información valiosa, que ofrezca una perspectiva sobre las tecnologías que existen para producir este tipo de biocombustible y de cómo se han aplicado a diferentes fuentes, en particular el jacinto de agua.
Abstract
A general review was conducted about the availability of raw materials in Colombia and processing steps recommended in lignocellulosic ethanol production currently. With theoretical exploration was made a comparison with existing reports about the Eichhornia crassipes, in order to explain differences and similarities that allow exalt the importance of expanding commodity options when considering producing bioethanol. Regarding pretreatment and hydrolysis methods lignocellulosic biomass, the emphasis was on the principles governing these procedures. This paper also presents results of the utilization of Water Hyacinth reservoirs of Empresas Públicas de Medellín (EPM) for the production of bioethanol. This effort responds to the need to bring together valuable information that provides an overview of the technologies available to produce this type of biofuel and how they have been applied to various sources, in particular the Water Hyacinth.
Keywords: Lignocellulosic ethanol, Eichhornia crassipes, biomass pretreatment.
Visitas del artículo 621 | Visitas PDF 1273
- Abraham, M. y G. M. Kurup (1996). Bioconversion
- of tapioca (Manihotesculenta) waste
- and water hyacinth (Eichhornia crassipes).
- Influence of various physico-chemical
- factors. Journal of Fermentation and
- Bioengineering, 82 (3),: 259-263.
- Aswathy, U. S., Sukumaran, R. K. et al.
- Bio-ethanol from water hyacinth biomass:
- An evaluation of enzymatic saccharification
- strategy. Bioresource Technology, 101
- (3), 925-930.
- Aswathy, U. S., Sukumaran, R. K., Devi, G. L.,
- Rajasree, K. P., Singhania, R. R., y Pandey,
- A. (2010). Bio-ethanol from water hyacinth
- biomass: an evaluation of enzymatic saccharification
- strategy. Bioresource technology,
- (3), 925-930.
- Brodeur, G., E. Yau, et al. (2011). “Chemical
- and Physicochemical Pretreatment of
- Lignocellulosic Biomass: A Review.
- “ Enzyme Research. 2011.
- Cheng, K. -K., B. -Y. Cai, et al. (2008). “Sugarcane
- bagasse hemicellulose hydrolysate
- for ethanol production by acid recovery
- process.” Biochemical Engineering Journal,
- (1),: 105-109.
- Dragone, G., S. I., Mussatto, et al. “Optimal
- fermentation conditions for maximizing the
- ethanol production by Kluyveromycesfragilis
- from cheese whey powder”. Biomass and
- Bioenergy, 35 (5),: 1977-1982.
- Ganguly, A., Halder, S., Laha, A., Saha, N.,
- Chatterjee, P. K. y Dey, A. (2013). Effect of
- Alkali Preteatment on Water Hyacinth Biomass
- for Production of Ethanol. Advanced
- Chemical Engineering Research, 2 (2).
- Ganguly, A., P. K., Chatterjee, et al. “Studies
- on ethanol production from water hyacinthae.”
- A review. “Renewable and Sustainable
- Energy Reviews (0)”.
- Gario, F. M., Fonseca, C. et al. Hemicelluloses
- for fuel ethanol: A review. Bioresource Technology,
- (13), 4775-4800.
- Gnansounou, E. y A. Dauriat. “Techno-economic
- analysis of lignocellulosic ethanol:
- A review. “ Bioresource Technology, 101(13):
- -4991.
- Golias, H., Dumsday, G. J., et al. (2002).
- “Evaluation of a recombinant Klebsiellaoxytoca
- strain for ethanol production from
- cellulose by simultaneous saccharification
- and fermentation: comparison with native
- cellobiose-utilising yeast strains and performance
- in co-culture with thermotolerant
- yeast and Zymomonasmobilis.” Journal of
- Biotechnology, 96(2): 155-168.
- González-García, S., M. T. Moreira, M. T.,
- et al. “Comparative environmental performance
- of lignocellulosic ethanol from
- different feedstocks. Renewable and Sustainable
- Energy Reviews, 14 (7): 2077-2085.
- Hamelinck, C. N., G. v. Hooijdonk, G. V. et
- al. (2005). “Ethanol from lignocellulosic
- biomass: techno-economic performance in
- short-, middle-and long-term”. Biomass and
- Bioenergy, 28 (4): 384-410.
- J. N., N. (2001). “Ethanol production from
- wheat straw hemicellulose hydrolysate
- by Pichiastipitis.” Journal of Biotechnology,
- (1),: 17-27.
- J. N., N. (2002). “Bioconversion of water-hyacinth
- (Eichhornia crassipes) hemicellulose
- acid hydrolysate to motor fuel ethanol by
- xylose a “fermenting yeast.” Journal of Biotechnology,
- (2),: 107-116.
- Jeewon, L. (1997). “Biological conversion of
- lignocellulosic biomass to ethanol.” Journal
- of Biotechnology, 56 (1),: 1-24.
- Kumar, A., L. K. Singh, L. K., et al. (2009).
- “Bioconversion of lignocellulosic fraction
- of water-hyacinth (Eichhornia crassipes)
- hemicellulose acid hydrolysate to ethanol
- by Pichiastipitis. Bioresource Technology,
- (13):, 3293-3297.
- Laser, M., D. Schulman, D., et al. (2002).
- “A comparison of liquid hot water and
- steam pretreatments of sugar cane bagasse
- Producción de bioetanol a partir de jacinto de agua (Eichhornia crassipes) respecto a otros materiales lignocelulósicos
- Vol. 2, N. 1 enero - junio DE 2012 61
- for bioconversion to ethanol.” Bioresource
- Technology, 81(1),: 33-44.
- Lee, S. --M. y J.-H. Lee, J. H. “Ethanol fermentation
- for main sugar components of
- brown-algae using various yeasts.” Journal
- of Industrial and Engineering Chemistry (0).
- Lee, S. -M. a y nd J.-H. Lee, J. H. “The isolation
- and characterization of simultaneous saccharification
- and fermentation microorganisms
- for Laminaria japonica utilization.”
- Bioresource Technology, 102 (10),: 5962-5967.
- Lynd, L. R., Weimer, P. J. et al. (2002).
- “Microbial Cellulose Utilization: Fundamentals
- and Biotechnology.” Microbiology
- and Molecular Biology Reviews, 66 (3), (3):
- -577.
- Mabee, W. E., P. N. McFarlane, P. J., et al.
- “Biomass availability for lignocellulosic
- ethanol production.” Biomass and Bioenergy,
- (0).
- Margeot, A., B. R. Hahn-Hagerdal, B. R. et al.
- (2009). “New improvements for lignocellulosic
- ethanol.” Current Opinion in Biotechnology,
- (3),: 372-380.
- Mishima, D., M. Tateda, M., et al. (2006).
- “Comparative study on chemical pretreatments
- to accelerate enzymatic hydrolysis of
- aquatic macrophyte biomass used in water
- purification processes.” Bioresource Technology,
- (16),: 2166-2172.
- Öhgren, K., R. Bura , et al. (2007). A comparison
- between simultaneous saccharification
- and fermentation and separate hydrolysis
- and fermentation using steam-pretreated
- corn stover. Process Biochemistry, 42 (5),
- -839.
- Olsson, L., H. R. Soerensen, H. R. et al.
- (2006). Separate and Simultaneous
- Enzymatic Hydrolysis and Fermentation of
- Wheat Hemicellulose With Recombinant
- Xylose Utilizing Saccharomyces cerevisiae.
- Twenty-Seventh Symposium on Biotechnology
- for Fuels and Chemicals, Humana Press,:
- -129.
- Rahman, M. M., Chowdhury, A. A. et al.
- (1986). “Microbial production of biogas form
- organic wastes.” Journal of Fermentation
- Technology, 64(1),: 45-49.
- Rogalinski, T., T. Ingram, T., et al. (2008).
- “Hydrolysis of lignocellulosic biomass in
- water under elevated temperatures and
- pressures.” The Journal of Supercritical
- Fluids, 47(1),: 54-63.
- Shields, S. y R. Boopathy, R.
- “Ethanol production from lignocellulosic
- biomass of energy cane.” International
- Biodeterioration& Biodegradation,
- (1),: 142-146.
- Singh, A., D. Pant, D. et al. “Key issues in life
- cycle assessment of ethanol production
- from lignocellulosic biomass: Challenges
- and perspectives.” Bioresource Technology,
- (13),: 5003-5012.
- Spatari, S., Bagley, D. M., et al. “Life cycle
- evaluation of emerging lignocellulosic ethanol
- conversion technologies.” Bioresource
- Technology, 101(2),: 654-667.
- Srilekha Yadav, K., S. Naseeruddin S., et al.
- “Bioethanol fermentation of concentrated
- rice straw hydrolysate using co-culture
- of Saccharomyces cerevisiae and Pichiastipitis.”
- Bioresource Technology, 102 (11),:
- -6478.
- Sukumaran, R. K., Surender, V. J., et al.
- “Lignocellulosic ethanol in India: Prospects,
- challenges and feedstock availability.” Bioresource
- Technology, 101(13),: 4826-4833.
- Sun, Y. y J. Cheng, J. (2002). “Hydrolysis of
- lignocellulosic materials for ethanol production:
- a review.” Bioresource Technology,
- (1),: 1-11.
- Swain, M. R., S. Kar, S. et al. (2007). “Ethanol
- fermentation of mahula (Madhucalatifolia
- L.) flowers using free and immobilized
- yeast Saccharomyces cerevisiae.” Microbiological
- Research, 162 (2),: 93-98.
- Takeshige, K. y K. Ouchi, K. (1995). “Reconstruction
- of ethanol fermentation in perKaren
- Ospino Villalba | Luis Alberto Ríos
- enero - junio DE 2012 Vol. 2, N. 1
- meabilized cells of the yeast Saccharomyces
- cerevisiae.” Journal of Fermentation and
- Bioengineering, 79(1),: 11-16.
- Talebnia, F., D. Karakashev, D. et al.
- “Production of bioethanol from wheat
- straw: An overview on pretreatment,
- hydrolysis and fermentation.” Bioresource
- Technology, 101 (13),: 4744-4753.
- Unrean, P. y F. Srienc, F. “Continuous production
- of ethanol from hexoses and pentoses
- using immobilized mixed cultures of Escherichia
- coli strains.” Journal of Biotechnology,
- (2),: 215-223.
- Van Walsum, G., S. Allen, S. et al. (1996).
- “Conversion of lignocellulosics pretreated
- with liquid hot water to ethanol.” Applied
- Biochemistry and Biotechnology, 57-58(1),:
- -170.
- Xu, L. y U. Tschirner, U. “Improved ethanol
- production from various carbohydrates
- through anaerobic thermophilic
- co-culture.” Bioresource Technology,
- (21),: 10065-10071.
- Yang, C., Z. Shen, Z. et al. (2008). “Effect and
- aftereffect of irradiation γ radiation pretreatment
- on enzymatic hydrolysis of wheat
- straw.” Bioresource Technology, 99 (14),:
- -6245.
- Yoon, H. (1998). “Pretreatment of lignocellulosic
- biomass by autohydrolysis and aqueous
- ammonia percolation.” Korean Journal of
- Chemical Engineering, 15(6),: 631-636.
- Zhao, J. y L. Xia, L. (2009). Simultaneous saccharification
- and fermentation of alkalinepretreated
- corn stover to ethanol using a
- recombinant yeast strain. Fuel Processing
- Technology, 90 (10), 1193-1197.
- Zhao, Y., Y. Wang, Y. et al. (2008). Enhanced
- enzymatic hydrolysis of spruce by alkaline
- pretreatment at low temperature. Biotechnology
- and bioengineering, 99 (6), 1320-1328.
- Zheng, P., L. Fang, L. et al. “Succinic acid production
- from corn stover by simultaneous
- saccharification and fermentation using
- Actinobacillussuccinogenes.” Bioresource
- Technology, 101 (20):, 7889-7894.
- Zhiguang Zhu. (2009). Investigating biomass
- saccharification for the production of cellulosic
- ethanol. Disponible en: www.scholar.
- lib.vt.edu/theses/available/etd-05042009-
- /unrestricted/zhiguangzhumsthesis-